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Renormalization group equations in a two-valley system with valley splitting and intervalley scattering are
derived in the presence of spin splitting induced by a parallel magnetic field. The relevant amplitudes in
different regimes set by the relative strengths of the spin and valley splittings and the intervalley scattering rate
are identified. The range of applicability of the standard formula for the magnetoconductance is discussed.
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I. INTRODUCTION

In two dimensions, an in-plane magnetic field, B�, couples
to the spin degrees of freedom leading to spin splitting of the
electronic bands. The electron-electron �e-e� interactions be-
tween the different spin bands gives rise to a finite magneto-
conductance, ��B� ,T�, and hence measurement of ��B� ,T�
provides a simple and accurate way of determining the ef-
fective spin-related interaction strength.1,2 In a disordered
two-dimensional �2D� electron gas, the transport properties
at low temperatures, kBT�� /�, are governed by singular dif-
fusive particle-hole propagators,3 D�q ,��=1 / �D0q2+��.
�Here D0 is the diffusion constant proportional to the elastic
scattering time �.� The spin splitting introduces gaps, propor-
tional to the Zeeman energy �z=g	BB�, in the propagators
with opposite particle-hole spin projections �i.e., the spin-
triplet channels with Sz= 
1� thereby cutting off their singu-
larity. While the presence of these gaps lead to negative
magnetconductance,4,5 ���B� ,T�=��B� ,T�−��0,T��0 in
the weak-field limit, �z�kBT, in the high-field limit the spin
bands are well split and the transport is governed entirely by
the Sz=0 channels, which are insensitive to spin splitting.6–8

In multivalley systems, such as high mobility silicon inver-
sion layers �Si-metal-oxide-semiconductor field-effect tran-
sistors �Si-MOSFETs��, where the analysis carried out in this
paper is most relevant, additional gaps proportional to the
valley splitting �v and intervalley scattering rates ��

=� /�� when present are introduced in the propagators.9,10

It is well known that the singular nature of D�q ,�� leads
to a strong enhancement of the e-e scattering amplitudes at
low energies.11 In two dimensions, renormalization group
�RG� theory applied to a weakly disordered system has been
extremely successful at capturing this scale dependence to all
orders in the e-e scattering amplitudes.8,12 Strong e-e scatter-
ing and energy renormalization effects, where the latter takes
into account the renormalization of the Stoner enhancement
factor, were incorporated into ���B� ,T� in Refs. 13 and 14.
They are generalized here to include the effects of �v and
��. A detailed understanding of the interplay of spin and
valley gaps on the form of ��B� ,T� in different T intervals
can be used to provide robust estimates for �v ,�� and the
various e-e scattering amplitudes in the spin-valley scattering
channels by fitting to experiments.

The notations for the various diffusion and e-e scattering
amplitudes in the spin-valley basis are described below in
this section. The situation in the absence of spin splitting �or

�z�kBT� has been discussed in detail in Ref. 15. For com-
pleteness and to outline the general theoretical methods em-
ployed, the RG equations in the temperature regions ��

�kBT��v and kBT�����v �labeled as �A� and �B� re-
gions in Fig. 1� are reproduced in Secs. II A and II B, respec-
tively. The classification of the relevant degenerate e-e scat-
tering amplitudes in these regions are shown schematically
in Fig. 1. It is assumed throughout that ����v, which is
found to be the case in high mobility Si-MOSFETs.16,17

�Typical values for �v are found to be less than 1 K for
electron densities greater than 1011 cm−2.� The cases involv-
ing �zkBT are derived in this paper in Secs. II C and II D
in the intermediate field regime ����z��v and the low-
field regime �z�����v, respectively. The corresponding
regions are labeled as �C� and �D� in Figs. 2 and 3. The
strong splitting limit �z��v, has been studied in Ref. 18.
This paper, together with Ref. 15 and 18, provide the com-
plete RG description of a weakly disordered two-valley sys-
tem in a parallel magnetic field in the presence of valley
splitting and intervalley scattering. It should be noted that the
contributions arising from the particle-particle channels, that
is, the Cooperon channels, have been suppressed in these
calculations, as it is seen experimentally in low-density Si-
MOSFETs that the phase breaking rate saturates at low
temperatures.19 It is, nevertheless, simple to include the
weak-localization corrections into the final RG equations, as
it is known3 that both spin and valley splittings do not affect
the weak-localization contribution to the RG equations to

FIG. 1. Schematics showing the classification of the e-e scatter-
ing amplitudes as a function of temperature T in the presence of
valley splitting Tv and intervalley scattering T�. The relevant am-
plitudes are marked by solid lines with the degenerate amplitudes
grouped together. The dashed lines mark the irrelevant amplitudes.
For completeness, the RG equations in each of the temperature
regimes T��T�Tv and T�T��Tv, labeled �A� and �B� in the
figure, are reproduced below in Secs. II A and II B, respectively,
from Ref. 15.

PHYSICAL REVIEW B 82, 115310 �2010�

1098-0121/2010/82�11�/115310�6� ©2010 The American Physical Society115310-1

http://dx.doi.org/10.1103/PhysRevB.82.115310


one-loop order when kBT���. In the opposite limit kBT
��� the number of Cooperon valley modes reduces to a
single mode due to strong intervalley scattering, the weak-
localization contribution is therefore halved in this limit.

Electrons in a two-valley system acquire additional valley
indices ���=
 depending on their valley occupancy. This
results in 4�4=16 electron-hole states, which may be con-
veniently combined into spin/valley-“singlet” and spin/
valley-“triplet” pairs. The various diffusion propagators and
the e-e scattering amplitudes in the �spin-singlet / triplets�
� �valley-singlet / triplets� basis are described below.

Diffusion modes. For �z=0, it was sufficient to label the
modes in terms of the valley states D��q ,��, where �=

and �. �See Ref. 15 for further details.� �=+ refers to the
valley-singlet channel which is gapless, and �=− and � re-
fer to the gapped valley-triplet channels with gaps propor-
tional to �� and �v+��, respectively. Since D− involves
scattering only within the same valley, it is insensitive to the
splitting �v. It, however, develops a gap �� when intervalley
scattering mixes the two valleys. All modes are effectively
gapless at high temperatures, kBT�v ,��. �Temperature
units Tv, T�, and Tz will be used interchangeably in the fol-
lowing to represent the scales �v, ��, and �z, respectively.�

For �z�0, the spin-triplet channels Sz= 
1 develop spin
gaps proportional to �z. Hence, it is convenient to label the
propagators as Dt� and Ds�

� , where the subscript t corre-
sponds to the spin-triplet channels with Sz= 
1, and s labels
the Sz=0 channels, with the singlet and the triplet Sz=0 chan-
nels labeled by �=
.

e-e scattering amplitudes. In a single valley system, the
e-e scattering amplitudes are uniquely described by the spin

texture of the scattering channel. The amplitudes �s and �t
are used to describe the scattering of particle-hole pairs in the
spin-singlet and spin-triplet channels, respectively. They are
related to the standard static Fermi-liquid amplitudes �1 and
�2 as �s=�1−�2 /2 and �t=−�2 /2. These definitions are eas-
ily extended to,15 �s�

� =�2�−4�1�
� and �t�=�2�, where �

=
, �, and �=
. �For notational convenience, the ampli-
tudes �s�

� are defined with a factor of −4.� Note that the
intervalley scattering amplitudes �1�

� are generally negligi-
bly small in a clean system because the Coulomb scattering
involving large momentum Q0 perpendicular to the 2D plane
is suppressed when the width of the inversion layer is many
times larger than the lattice spacing, hence �s�

� =�t�=�2�.
Together, the total number of amplitudes equal �s�

� �4	
+�t��8	+�s�

� �4	= �16	, where the number of channels are
given in curly brackets.

In the high-temperature limit, TTv ,Tz, the amplitudes
�1�

� , except for �1+
+ , are identically zero. The �1+

+ amplitude,
which involves scattering in the spin and valley singlet chan-
nels, �spin-singlet� � �valley-singlet�, is special in that it
combines with the long-ranged part of the Coulomb interac-
tion to produce a universal amplitude.3 �Details are given
below in Sec. II A� Hence, all 15 of the 16 amplitudes are
equal and evolve as �2. They are shown grouped together
when TTv in Fig. 1.

When T��T�Tv, the D� propagators are gapped, the
corrections to �� are therefore nonsingular and hence irrel-
evant. On the other hand, the �1−

+ amplitude in the
�spin-singlet� � �valley-triplet� channel, which vanishes at
high temperatures, was shown in Ref. 15 to be generated
under the RG transformations when T�Tv. �To emphasize
that �s−

+ arises as an independent scaling variable only when
the valley subbands are split, it is designated as �v
�s−

+ .�
This is a generic feature of multiband systems with subband
splittings, it was first discussed in Ref. 18 in the opposite
case Tv�T�Tz in which case the relevant amplitude is �1+

−

where the spin and valley indices are interchanged.
The splitting of the 15 amplitudes below Tv are shown

schematically in Fig. 1. The solid horizontal lines mark the
relevant amplitudes and the dashed lines mark the irrelevant
ones. The degenerate amplitudes under the RG flow are
grouped together with the degeneracy indicated in curly
brackets. At the lowest temperature T�T�, when the two
valleys are strongly mixed, only the valley-singlet propaga-
tor D+ remains gapless. Hence, only the amplitudes in the
valley-singlet channel �+ survives.

Clearly, the number of relevant e-e scattering amplitudes
in a multiband system at a given scale is sensitive to the
splitting and the interband scattering rates within the bands.
Figure 2 shows schematically the effect of a weak magnetic
field Tz�T� ,Tv on the amplitudes. The spin gap suppresses
the singular corrections in the spin-triplet channels, hence
only �s+

− �and �s+
+ � develops singular diffusion corrections.

The amplitude is designated as �z
�s+
− to emphasize that

T�Tz.
Finally, Fig. 3 shows schematically the relevant ampli-

tudes for intermediate values of the spin splitting T��Tz
�Tv. As in Fig. 2, the spin-triplet channels, �t, are irrelevant
below Tz due to the gap in the Dt propagators. As a result,
the number of relevant amplitudes reduces from seven for
TTz to three for T�Tz.

FIG. 2. Schematics showing the classification of the relevant e-e
scattering amplitudes for weak spin splitting, Tz�T� ,Tv, as func-
tion of temperature. The RG equations corresponding to region �D�,
i.e., T�Tz, are derived in Sec. II D.

FIG. 3. Schematics showing the classification of the relevant e-e
scattering amplitudes for intermediate values of the spin splitting,
T��Tz�Tv, as function of temperature. The RG equations corre-
sponding to region �C�, i.e., T��T�Tz are derived in Sec. II C.
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II. SCALING EQUATIONS

The RG equations in each of the temperature intervals
shown in Figs. 2 and 3 are derived below. The relevant equa-
tions when spin splitting can be ignored, TTz, have been
derived in detail in Ref. 15. The logarithmic corrections are
presented here in Secs. II A and II B after including the spin
degrees of freedom explicitly.

A. T� ,Tz›T›Tv

Since the D� modes are gapped for T�Tv, their contri-
butions are nonsingular and hence dropped. All other modes
are effectively gapless when TTz ,T�. The gapless propa-
gators are set equal to Ds


� =Dt

D�q ,��=1 / �Dq2+z��,
where D is the renormalized diffusion constant and z param-
etrizes the relative scaling of the frequency with respect to
the length scale.11,20 Both D and z acquire diffusion correc-
tions in an interacting system. �z=1 for a noninteracting
system.3�

The nature of the gapless diffusion modes induce the fol-
lowing relations on the amplitudes: �t+=�t−
�2, ��1+

+

=��1−
+ , and ��1


− =0. Since ��1

− =0, the amplitudes �s


−

=�2 are degenerate. The diffusion corrections in terms of
these variables take the form15

�D

D
= −

4

�
� � ��1−

+ + �1+
+ − 2�2�D3�q,��Dq2, �1a�

�z = −
1

��
� d2q

�2��2 ��1−
+ + �1+

+ − 2�2�D�q,0� , �1b�

��2 =
1

��
� d2q

�2��2 ��1−
+ + �1+

+ �D�q,0� + 8���2� , �1c�

��1

+ =

1

2��
� d2q

�2��2�2D�q,0� + 2���2� . �1d�

The single integral is defined as �=d2q / �2��2 and the double
integral as ��=�d2q / �2��2�d� / �2��. The density of states
per spin and valley �=m /2�. The contributions of the “ring”
diagrams11 equals ���2�, where �see Fig. 5 in Ref. 15�

���2� = +
1

�
� � �2��2D2� −

1

2
��2

2D2� −
1

�
� � ��2��2

2D3�

− ��2
2��2D3� −

1

2�
� � �2�2

2��2
2D4� . �2�

As noted already, the relevance of the �1−
+ amplitude in

the temperature range T��T�Tv is specific to problems
with split bands in a multivalley system. Although the cor-
rections ��1+

+ =��1−
+ for T�Tv, their initial values are differ-

ent. The amplitude �1−
+ =0 when TTv, while the singlet

amplitude �1+
+ is special as it combines with the static limit

of the Coulomb interaction, denoted here as �0+
+ �it is con-

ventionally denoted simply as �0 in a single valley system
with degenerate spin bands3�. The �1+

+ amplitude appearing
in Eqs. �1a�–�1c� are to be replaced by its long-ranged value,

�1+
+ → �1

LR = �0+
+ + �1+

+ . �3�

When combined with the �2 amplitude, the long-ranged sin-
glet amplitude is given as: �s

LR=�2−4�1
LR. �To be consistent

with the notations in this paper, �s
LR is defined with an extra

factor of −4.� It is easily verified by combining Eqs.
�1b�–�1d� that the singlet combination ��z+�s

LR�=0 is satis-
fied at all length scales, provided the corrections to the static
amplitude ��0+

+ =0. This is a well-established result with
great importance for the general structure of the theory.11,12

Having obtained the leading logarithmic corrections, the
scaling equations are derived to first order in the dimension-
less resistance �=1 /4�2�2�D� and to all orders in the e-e
interaction amplitudes by performing the ladder summations
described in Fig. 6 in Ref. 15. It amounts to replacing the
static amplitudes �i by the dynamical amplitudes Ui�q ,��,

Ui�q,�� = �i

Di�q,��
D�q,��

, �4�

where, the propagators Di are defined as

Di�q,�� =
1

Dq2 + �z + �i��
. �5�

The amplitudes �i represents �2, �s−
+ , and �s

LR. Note that
since the leading logarithmic corrections involve only one
momentum integration, it generates only one factor of 1 /D.
The corrections are therefore limited to the first order in re-
sistance � �disorder�. The limitation on the number of mo-
mentum integrations constraints the number of e-e vertices
in the skeleton diagrams. The ladder sums extend the skel-
eton diagrams to all orders in �i without changing the num-
ber of momentum integrations. Note, however, that only
those interaction vertices involving frequency integrations
can be extended to include dynamical effects. These ampli-
tudes are enclosed in square brackets in Eq. �2�. Substituting
the �2 amplitudes in the square brackets with U2 and per-
forming the q ,� integrals leads to the very simple
expression,8,11

���2� = �2
2

z
� �

�

2
log 1

T�
� . �6�

The remaining single integrals �d2qD�q ,0� involving
only momentum integrations are easily evaluated to give

1

��
� d2q

�2��2D�q,0� = 2� log 1

T�
� . �7�

The integrals in �D containing � integrations remain to
be evaluated. Before the integrals can be done, the �1+

+ am-
plitude is replaced with �1

LR following Eq. �3�, after which
the amplitudes �1

LR, �1−
+ , and �2 are rearranged to form �s

LR

and �s−
+ and �2 and then extended to Us

LR, Us−
+ , and U2, re-

spectively.
When the equation for � is expressed in terms of the scal-

ing variables, �2=�2 /z and �v=�s−
+ /z, the equations for �,

�2, and �v form a closed set of equations independent of z.
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The final RG equations in the range T� ,Tz�T�Tv are given
below with the scale � defined to logarithmic accuracy as �
=log�1 /T��,

d�

d�
= �2�1 − ���v� − 6���2�� , �8a�

d�2

d�
=

�

2
��1 + �2�2 + �1 + �2���2 − �v�� , �8b�

d�v

d�
=

�

2
�1 + �v��1 − �v − 6�2� , �8c�

d ln z

d�
= −

�

2
�1 − �v − 6�2� . �8d�

The function ���� is defined as

���� = 1 +
1

�
�log�1 + �� − 1. �9�

As described in Fig. 3, the 15 degenerate amplitudes for
TTv split into six �2 and one �v amplitude when T�Tv.
�This splitting of the amplitudes is generic to multiband sys-
tems with subband splittings. The same equations are ob-
tained when instead of the valley bands, the spin bands are
split,18 i.e., Tv�T�Tz.� Note that �v coincides with �2 when
T�Tv.

B. Tz›T›T� ,Tv

The relevant amplitudes in the presence of strong valley
mixing �T�T�� correspond to scattering in the valley-
singlet channels, �s+

− and �t+. Since ��1+
− =0 vanishes in the

absence of spin splitting �TTz�, it follows that the ampli-
tudes �s+

− =�t+=�2 are all equal and satisfy the equations15

�D

D
= −

4

�
� � ��1+

+ − �2�D3�q,��Dq2, �10a�

�z = −
1

��
� d2q

�2��2 ��1+
+ − �2�D�q,0� , �10b�

��2 =
1

��
� d2q

�2��2�1+
+ D�q,0� + 4���2� , �10c�

��1+
+ =

1

4��
� d2q

�2��2�2D�q,0� + ���2� . �10d�

The coefficient of �2 and the ring diagrams ���2� in Eqs.
�10a�–�10c� are suppressed by a factor 2 when compared
with Eqs. �1a�–�1c� since they no longer contain a valley
sum. The corrections to �1�

� in Eq. �10d� already do not carry
a valley sum, only half the amplitude involving the same
valley, however, acquires corrections when the valley bands
are mixed, which accounts for the overall factor of half when
compared with Eq. �1d�. Note that the condition ��z+�s

LR�
=0 is satisfied. Following the procedure described in Sec.
II A, the RG equations read

d�

d�
= �2�1 − 3���2�� , �11a�

d�2

d�
=

�

2
�1 + �2�2, �11b�

d ln z

d�
= −

�

2
�1 − 3�2� . �11c�

The function ���� is defined in Eq. �9�. As described in
Fig. 2, only three of the 15 degenerate amplitudes survive
when T�T� when spin splitting can be neglected TTz.
The high field cases are discussed below, i.e., T�Tz.

C. T�›T›Tz›Tv

It should be noted that the results for T�Tz�Tv is
equivalent to the situation if the gap scales were reversed,
i.e., T�Tv�Tz, provided of course the spin and valley indi-
ces are interchangeable, which is the case when TT�. The
RG equations for Tv�Tz are derived in Ref. 18. The opposite
situation Tz�Tv is derived here.

When T�Tz, the Dt
 propagators are gapped, and hence
the corrections in the Sz= 
1 channel are nonsingular. The
corresponding amplitudes �t
 are therefore irrelevant at
these temperatures, which reduces the number of relevant
interaction amplitudes by 4. Furthermore, the amplitude �1+

−

acquires diffusion corrections18 when T�Tz in the same way
that �1−

+ does when T�Tv. Since T�Tz and Tv, the ampli-
tude �1−

− also acquires logarithmic corrections. As a result,
both �s


− are different from �2 when T�Tz ,Tv. After includ-
ing the contributions from �1�

� , the diffusion corrections for
T�Tz take the form

�D

D
= −

4

�
� �  �

�,�=


�1�
� − �2�D3�q,��Dq2, �12a�

�z = −
1

��
�  �

�,�=


�1�
� − �2�D�q,0� , �12b�

��2 =
1

��
� �

�,�=


�1�
� D�q,0� + 4���2� , �12c�

��1�
� =

1

4��
� �2D�q,0� + ���2� . �12d�

The coefficient of �2 and the ring diagrams ���2� in Eqs.
�12a�–�12c� are suppressed by a factor 2 when compared
with Eqs. �1a�–�1c� since they no longer contain a spin sum.
The corrections to �1�

� in Eq. �12d� already do not carry a
spin sum. Only half the amplitude involving the same spin,
however, acquires corrections when the spin bands are split,
which accounts for the overall factor of half when compared
with Eq. �1d�. Since ��1+

− =��1−
− , the amplitudes, after com-

bining with �2, can be grouped together as �s�
− 
�z. Extend-

ing the singlet amplitude �1+
+ to include the static long-

ranged part of the Coulomb interactions �1
LR as discussed in
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Eq. �3� and using the identity �2−��,��1�
� =��,��s�

� /4, the
amplitude �2 can be eliminated from Eqs. �12a�–�12d� in
favor of the amplitudes �s

LR, �z, and �v as

�D

D
=

1

�
� � ��s

LR + �v + 2�z�D3�q,��Dq2, �13a�

�z =
1

4��
� ��s

LR + �v + 2�z�D�q,0� , �13b�

��z = ��v = ��s
LR = − �z . �13c�

Combining Eqs. �12c� and �12d� to give Eq. �13c� is pos-
sible only because the ���2� contribution cancels exactly
when the sum over opposite spin projections are suppressed
due to spin splitting.7 Also note in Eq. �13c�, that the singlet
combination ��z+�s

LR�=0 holds explicitly, as needed for the
consistency of the RG theory.8,12

The RG equations are obtained by evaluating the integrals
after extending the static amplitudes by the dynamical am-
plitudes Ui defined in Eq. �4�. The RG equations for T�

�T�Tz�Tv are

d�

d�
= �2�1 − ���v� − 2���z�� , �14a�

d�z

d�
=

�

2
�1 + �z��1 − �v − 2�z� , �14b�

d�v

d�
=

�

2
�1 + �v��1 − �v − 2�z� , �14c�

d ln z

d�
= −

�

2
�1 − �v − 2�z� . �14d�

As described in Fig. 3, the four �t
 amplitudes are sup-
pressed when T�Tz, leaving two �z amplitudes, which
evolve away from �2. Note that �z��2 when T�Tz, while
�v��2 when T�Tv. �The RG equations when spin splitting
is large, T�Tv�Tz, take the same form as Eqs. �14a�–�14d�
provided the spin and valley indices are interchanged; see
Ref. 18 for details.�

D. T›T� ,Tz ,Tv

The two valleys are strongly mixed when T�T�, leaving
only the valley-singlet propagators Ds+

� gapless. Hence, only
�s+

− =�z and �1+
+ , survive at low temperatures. The corre-

sponding diffusion corrections read

�D

D
= −

4

�
� � �1+

− + �1+
+ −

1

2
�2�D3�q,��Dq2,

�15a�

�z = −
1

��
� �1+

− + �1+
+ −

1

2
�2�D�q,0� , �15b�

��2 =
1

��
� ��1+

− + �1+
+ �D�q,0� + 2���2� , �15c�

��1+
� =

1

8��
� �2D�q,0� +

1

2
���2� . �15d�

All terms involving �2 amplitudes are suppressed by a
factor of 2 in Eqs. �15a�–�15c� compared to Eqs. �12a�–�12c�
due to the suppression of the �t− amplitudes, which are irrel-
evant when T�T�. The equations can be simplified in terms
of the amplitudes �s

LR and �z as

�D

D
=

1

�
� � ��s

LR + �z�D3�q,��Dq2, �16a�

�z =
1

4��
� ��s

LR + �z�D�q,0� , �16b�

��z = ��s
LR = − �z . �16c�

Note again that the condition ��z+�s
LR�=0 is satisfied.

Following the procedure followed in the previous sections,
the RG equations for T�T� ,Tz ,Tv are

d�

d�
= �2�1 − ���z�� , �17a�

d�z

d�
=

�

2
�1 + �z��1 − �z� , �17b�

d ln z

d�
= −

�

2
�1 − �z� . �17c�

These equations coincide with the results obtained in the
case of a single valley with spin splitting studied in Ref. 20.
Strong intervalley scattering for T�T� mixes the two val-
leys to effectively produce a single valley.

III. CONCLUSIONS

The derivation of the scaling equations in Sec. II were
carried out keeping only the gapless valley and spin channels
in each temperature interval. The scale dependence of the
dimensionless resistance �= �e2 /�h�R�, where R� is the
sheet resistance, is then obtained by integrating the self-
consistent set of scaling equations separately in each tem-
perature interval and matching the values of the amplitudes
and resistance at the boundaries of each interval. Since the
intervals are sensitive to the value of Tz, one obtains in this
way ��B� ,T� whose inverse gives ��B� ,T�=1 /��B� ,T�. This
method is, however, not accurate as the crossover regions
have finite contributions from the gapped channels and are
hence nonuniversal.

The case of weak spin splitting Tz�T can be treated fairly
accurately, however. In this case the sensitivity to B� arises
only from the presence of a weak spin gap in the triplet
channels below the scale set by T. Hence, subtracting ��0,T�
from ��B� ,T� captures only the contributions originating
from the suppression of the triplet channels. The explicit
form ���B� ,T� for the single valley case was derived in
Refs. 5 and 14 in the limit Tz�T. When the number, Nt, of �t
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amplitudes that develop spin gaps are accounted for,
���B� ,T� takes the form

���B�,T� = − 0.091
e2

2�h
Nt�2��2 + 1��Tz/T�2. �18�

In Fig. 2, by comparing regions �B� and �D�, one observes
that both the �t+ amplitudes develop spin gaps and are sup-
pressed as Tz is varied. It follows that Nt=2 when Tz�T
�T�. Similar analysis comparing regions �A� and �C� in Fig.
3 gives Nt=4 when Tz�T�Tv. Finally, Nt=8 in the high-
temperature region TTv ,Tz.

1

To summarize, RG equations in the presence of spin split-
ting induced by a parallel magnetic field have been obtained
in a two-valley system in the valley-split and strong interval-
ley scattering regimes. The form of ���B� ,T� in the weak
magnetic field limit are discussed.
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